
A Computational Review - Stats 100 A

Andrew Lizarraga

Department of Statistics and Data Science

April 16, 2024

1 / 110



A Quick Note

Note:
This lecture will review the computation aspects of what you’ve
previously have learned in this course.

Now is the time to open up your text editor. We will be reviewing
very basic R.

The supplemental R files should be available here:
https://bruinlearn.ucla.edu/.

If you can’t find them there. You can get them from my site:
https://drewrl3v.github.io/teaching/spr24_stats100a/

2 / 110

https://bruinlearn.ucla.edu/
https://drewrl3v.github.io/teaching/spr24_stats100a/


Install R and RStudio

macOS & Windows Install:
https://posit.co/download/rstudio-desktop/.

If you have a package manager:

I Windows:

I winget install -e –id RProject.R

I winget install -e –id RStudio.RStudio.OpenSource

I macOS:

I brew install r

I brew install –cask rstudio

3 / 110

https://posit.co/download/rstudio-desktop/


Generate Uniform Random Numbers

1 # Generate 1000 uniform random numbers between 0 and 1

2
3
4 # Plot the histogram of the random numbers

5
6

4 / 110



Generate Uniform Random Numbers

1 # Generate 1000 uniform random numbers between 0 and 1

2 random_numbers <- runif(1000, min = 0, max = 1)

3
4 # Plot the histogram of the random numbers

5
6

5 / 110



Generate Uniform Random Numbers

1 # Generate 1000 uniform random numbers between 0 and 1

2 random_numbers <- runif(1000, min = 0, max = 1)

3
4 # Plot the histogram of the random numbers

5 hist(random_numbers, main = "Histogram of Uniform Random Numbers", xlab = "Value",

6 ylab = "Frequency",col = "lightblue", border = "blue")

6 / 110



Uniformly Random Scatter Plot

1 # Number of times to repeat generating the two numbers

2
3
4 # Generate n uniform random numbers for X and Y

5
6
7
8 # Plot the scatterplot of X vs Y

9
10

7 / 110



Uniformly Random Scatter Plot

1 # Number of times to repeat generating the two numbers

2 n <- 1000

3
4 # Generate n uniform random numbers for X and Y

5
6
7
8 # Plot the scatterplot of X vs Y

9
10

8 / 110



Uniformly Random Scatter Plot

1 # Number of times to repeat generating the two numbers

2 n <- 1000

3
4 # Generate n uniform random numbers for X and Y

5 X <- runif(n, min = 0, max = 1)

6 Y <- runif(n, min = 0, max = 1)

7
8 # Plot the scatterplot of X vs Y

9
10

9 / 110



Uniformly Random Scatter Plot

1 # Number of times to repeat generating the two numbers

2 n <- 1000

3
4 # Generate n uniform random numbers for X and Y

5 X <- runif(n, min = 0, max = 1)

6 Y <- runif(n, min = 0, max = 1)

7
8 # Plot the scatterplot of X vs Y

9 plot(X, Y, main = "Scatterplot of Independent Uniform Random Numbers",

10 xlab = "X Values", ylab = "Y Values", col = "blue", pch = 19)

10 / 110



Estimating Pi

1 # Number of points to generate

2
3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5
6
7
8 # Count how many points fall inside the unit circle

9
10
11 # Estimate Pi

12
13
14 # Print the estimate

15

11 / 110



Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5
6
7
8 # Count how many points fall inside the unit circle

9
10
11 # Estimate Pi

12
13
14 # Print the estimate

15

12 / 110



Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5 X <- runif(n, min = -1, max = 1)

6 Y <- runif(n, min = -1, max = 1)

7
8 # Count how many points fall inside the unit circle

9
10
11 # Estimate Pi

12
13
14 # Print the estimate

15

13 / 110



Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5 X <- runif(n, min = -1, max = 1)

6 Y <- runif(n, min = -1, max = 1)

7
8 # Count how many points fall inside the unit circle

9 points_inside <- sum(X^2 + Y^2 < 1)

10
11 # Estimate Pi

12
13
14 # Print the estimate

15

14 / 110



Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5 X <- runif(n, min = -1, max = 1)

6 Y <- runif(n, min = -1, max = 1)

7
8 # Count how many points fall inside the unit circle

9 points_inside <- sum(X^2 + Y^2 < 1)

10
11 # Estimate Pi

12 pi_estimate <- (points_inside / n) * 4

13
14 # Print the estimate

15

15 / 110



Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5 X <- runif(n, min = -1, max = 1)

6 Y <- runif(n, min = -1, max = 1)

7
8 # Count how many points fall inside the unit circle

9 points_inside <- sum(X^2 + Y^2 < 1)

10
11 # Estimate Pi

12 pi_estimate <- (points_inside / n) * 4

13
14 # Print the estimate

15 print(pi_estimate)

16 / 110



Flipping A Fair Coin

1 # Generate a uniform random number U between 0 and 1

2
3
4 # Determine the value of Z based on U

5
6
7 # Print the result

8

17 / 110



Flipping A Fair Coin

1 # Generate a uniform random number U between 0 and 1

2 U <- runif(1, min = 0, max = 1)

3
4 # Determine the value of Z based on U

5
6
7 # Print the result

8

18 / 110



Flipping A Fair Coin

1 # Generate a uniform random number U between 0 and 1

2 U <- runif(1, min = 0, max = 1)

3
4 # Determine the value of Z based on U

5 Z <- ifelse(U < 0.5, 0, 1)

6
7 # Print the result

8

19 / 110



Flipping A Fair Coin

1 # Generate a uniform random number U between 0 and 1

2 U <- runif(1, min = 0, max = 1)

3
4 # Determine the value of Z based on U

5 Z <- ifelse(U < 0.5, 0, 1)

6
7 # Print the result

8 print(Z)

20 / 110



Flipping Many Coins

1 # Number of coin flips

2
3
4 # Generate n uniform random numbers U between 0 and 1

5
6
7 # Determine the value of Z for each U

8
9

10 # Print the results

11

21 / 110



Flipping Many Coins

1 # Number of coin flips

2 n <- 10

3
4 # Generate n uniform random numbers U between 0 and 1

5
6
7 # Determine the value of Z for each U

8
9

10 # Print the results

11

22 / 110



Flipping Many Coins

1 # Number of coin flips

2 n <- 10

3
4 # Generate n uniform random numbers U between 0 and 1

5 U <- runif(n, min = 0, max = 1)

6
7 # Determine the value of Z for each U

8
9

10 # Print the results

11

23 / 110



Flipping Many Coins

1 # Number of coin flips

2 n <- 10

3
4 # Generate n uniform random numbers U between 0 and 1

5 U <- runif(n, min = 0, max = 1)

6
7 # Determine the value of Z for each U

8 Z <- ifelse(U < 0.5, 0, 1)

9
10 # Print the results

11

24 / 110



Flipping Many Coins

1 # Number of coin flips

2 n <- 10

3
4 # Generate n uniform random numbers U between 0 and 1

5 U <- runif(n, min = 0, max = 1)

6
7 # Determine the value of Z for each U

8 Z <- ifelse(U < 0.5, 0, 1)

9
10 # Print the results

11 print(Z)

25 / 110



Averaging Coin Flips

1 # Number of coins to flip in each experiment

2
3
4 # Number of experiments

5
6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail),!
8
9

10 # Sum the number of heads (1s) in each experiment to get X

11
12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

26 / 110



Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5
6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail),!
8
9

10 # Sum the number of heads (1s) in each experiment to get X

11
12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

27 / 110



Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail),!
8
9

10 # Sum the number of heads (1s) in each experiment to get X

11
12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

28 / 110



Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail),!
8 coin_flips <- matrix(runif(n * m, min = 0, max = 1) < 0.5, nrow = m, ncol = n)

9
10 # Sum the number of heads (1s) in each experiment to get X

11
12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

29 / 110



Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail),!
8 coin_flips <- matrix(runif(n * m, min = 0, max = 1) < 0.5, nrow = m, ncol = n)

9
10 # Sum the number of heads (1s) in each experiment to get X

11 X <- rowSums(coin_flips)

12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

30 / 110



Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail),!
8 coin_flips <- matrix(runif(n * m, min = 0, max = 1) < 0.5, nrow = m, ncol = n)

9
10 # Sum the number of heads (1s) in each experiment to get X

11 X <- rowSums(coin_flips)

12
13 # Plot the histogram of X

14 hist(X, main = "Histogram of Number of Heads (X)", xlab = "Number of Heads",

15 ylab = "Frequency", col = "lightblue", border = "blue")

16
17 # Plot the histogram of X/n

18
19

31 / 110



Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail),!
8 coin_flips <- matrix(runif(n * m, min = 0, max = 1) < 0.5, nrow = m, ncol = n)

9
10 # Sum the number of heads (1s) in each experiment to get X

11 X <- rowSums(coin_flips)

12
13 # Plot the histogram of X

14 hist(X, main = "Histogram of Number of Heads (X)", xlab = "Number of Heads",

15 ylab = "Frequency", col = "lightblue", border = "blue")

16
17 # Plot the histogram of X/n

18 hist(X/n, main = "Histogram of Proportion of Heads (X/n)", xlab = "Proportion of Heads",

19 ylab = "Frequency", col = "lightgreen", border = "darkgreen")

32 / 110



A Random Walk

1 # Total number of steps

2
3
4 # Generate uniform random numbers

5
6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8
9

10 # Initialize X

11
12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

33 / 110



A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5
6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8
9

10 # Initialize X

11
12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

34 / 110



A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8
9

10 # Initialize X

11
12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

35 / 110



A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11
12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

36 / 110



A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11 X <- rep(0, t + 1)

12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

37 / 110



A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11 X <- rep(0, t + 1)

12
13 # Compute X_t for each step

14 for (i in 1:t) {

15 X[i + 1] <- X[i] + Z[i]

16 }

17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

38 / 110



A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11 X <- rep(0, t + 1)

12
13 # Compute X_t for each step

14 for (i in 1:t) {

15 X[i + 1] <- X[i] + Z[i]

16 }

17
18 # Plot the trajectory of the random walk

19 plot(0:t, X, type = "l", main = "Trajectory of the Random Walk", xlab = "Time t",

20 ylab = "Position X", col = "blue")

21
22 # Plot a histogram of the final positions

23
24

39 / 110



A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11 X <- rep(0, t + 1)

12
13 # Compute X_t for each step

14 for (i in 1:t) {

15 X[i + 1] <- X[i] + Z[i]

16 }

17
18 # Plot the trajectory of the random walk

19 plot(0:t, X, type = "l", main = "Trajectory of the Random Walk", xlab = "Time t",

20 ylab = "Position X", col = "blue")

21
22 # Plot a histogram of the final positions

23 hist(X, main = "Histogram of Positions at Final Time Step", xlab = "Position X",

24 ylab = "Frequency", col = "lightgreen", border = "darkgreen")

40 / 110



Transformation Of Random Variable

1 # Number of random variables to generate

2
3
4 # Generate uniform random variables U

5
6
7 # Transform U to get exponential random variables X

8
9

10 # Plot histogram of X to visualize the exponential distribution

11
12

41 / 110



Transformation Of Random Variable

1 # Number of random variables to generate

2 n <- 1000

3
4 # Generate uniform random variables U

5
6
7 # Transform U to get exponential random variables X

8
9

10 # Plot histogram of X to visualize the exponential distribution

11
12

42 / 110



Transformation Of Random Variable

1 # Number of random variables to generate

2 n <- 1000

3
4 # Generate uniform random variables U

5 U <- runif(n, min = 0, max = 1)

6
7 # Transform U to get exponential random variables X

8
9

10 # Plot histogram of X to visualize the exponential distribution

11
12

43 / 110



Transformation Of Random Variable

1 # Number of random variables to generate

2 n <- 1000

3
4 # Generate uniform random variables U

5 U <- runif(n, min = 0, max = 1)

6
7 # Transform U to get exponential random variables X

8 X <- -log(U)

9
10 # Plot histogram of X to visualize the exponential distribution

11
12

44 / 110



Transformation Of Random Variable

1 # Number of random variables to generate

2 n <- 1000

3
4 # Generate uniform random variables U

5 U <- runif(n, min = 0, max = 1)

6
7 # Transform U to get exponential random variables X

8 X <- -log(U)

9
10 # Plot histogram of X to visualize the exponential distribution

11 hist(X, main = "Histogram of Exponential Random Variables", xlab = "X",

12 ylab = "Frequency", col = "lightblue", border = "blue", breaks = 50)

45 / 110



Central Limit Theorem & Law of Large Numbers

1 # Number of trials

2 trials <- 10000

3
4 # Initialize vectors to store the results

5 mean_u <- numeric(trials)

6 clt_u <- numeric(trials)

7
8 # Number of observations (change this to see different effects)

9 n <- 30

10
11 # Simulation

12 for (i in 1:trials) {

13 # Generate n uniform random numbers

14 U <- runif(n, min = 0, max = 1)

15
16 # Calculate the mean

17 mean_u[i] <- mean(U)

18
19 # Calculate for CLT

20 clt_u[i] <- sqrt(n) * (mean_u[i] - 1/2)

21 }

22
23 # Plot the histogram of mean_u to demonstrate LLN

24 hist(mean_u, main = "LLN: Histogram of U-bar", xlab = "U-bar",

25 ylab = "Frequency", col = "lightblue", border = "blue", breaks = 30)

26
27 # Plot the histogram of clt_u to demonstrate CLT

28 hist(clt_u, main = "CLT: Histogram of sqrt(n) (U-bar - 1/2)",

29 xlab = "sqrt(n) (U-bar - 1/2)", ylab = "Frequency", col = "lightgreen",

30 border = "darkgreen", breaks = 30)

46 / 110



Thank You / Questions

Contact:
Prof. Ying Nian Wu may not be immediately available. You may
contact at: andrewlizarraga@g.ucla.edu for the duration of this
week.

Note:
The lecture material for this week should be available on
https://bruinlearn.ucla.edu/.

If you can’t find them there. You can get them from my site:
https://drewrl3v.github.io/teaching/spr24_stats100a/

110 / 110

https://bruinlearn.ucla.edu/
https://drewrl3v.github.io/teaching/spr24_stats100a/

