
A Computational Review - Stats 100 A

Andrew Lizarraga

Department of Statistics and Data Science

April 16, 2024

1 / 110

A Quick Note

Note:
This lecture will review the computation aspects of what you’ve
previously have learned in this course.

Now is the time to open up your text editor. We will be reviewing
very basic R.

The supplemental R files should be available here:
https://bruinlearn.ucla.edu/.

If you can’t find them there. You can get them from my site:
https://drewrl3v.github.io/teaching/spr24_stats100a/

2 / 110

https://bruinlearn.ucla.edu/
https://drewrl3v.github.io/teaching/spr24_stats100a/

Install R and RStudio

macOS & Windows Install:
https://posit.co/download/rstudio-desktop/.

If you have a package manager:

▶ Windows:

▶ winget install -e –id RProject.R

▶ winget install -e –id RStudio.RStudio.OpenSource

▶ macOS:

▶ brew install r

▶ brew install –cask rstudio

3 / 110

https://posit.co/download/rstudio-desktop/

Generate Uniform Random Numbers

1 # Generate 1000 uniform random numbers between 0 and 1

2
3
4 # Plot the histogram of the random numbers

5
6

4 / 110

Generate Uniform Random Numbers

1 # Generate 1000 uniform random numbers between 0 and 1

2 random_numbers <- runif(1000, min = 0, max = 1)

3
4 # Plot the histogram of the random numbers

5
6

5 / 110

Generate Uniform Random Numbers

1 # Generate 1000 uniform random numbers between 0 and 1

2 random_numbers <- runif(1000, min = 0, max = 1)

3
4 # Plot the histogram of the random numbers

5 hist(random_numbers, main = "Histogram of Uniform Random Numbers", xlab = "Value",

6 ylab = "Frequency",col = "lightblue", border = "blue")

6 / 110

Uniformly Random Scatter Plot

1 # Number of times to repeat generating the two numbers

2
3
4 # Generate n uniform random numbers for X and Y

5
6
7
8 # Plot the scatterplot of X vs Y

9
10

7 / 110

Uniformly Random Scatter Plot

1 # Number of times to repeat generating the two numbers

2 n <- 1000

3
4 # Generate n uniform random numbers for X and Y

5
6
7
8 # Plot the scatterplot of X vs Y

9
10

8 / 110

Uniformly Random Scatter Plot

1 # Number of times to repeat generating the two numbers

2 n <- 1000

3
4 # Generate n uniform random numbers for X and Y

5 X <- runif(n, min = 0, max = 1)

6 Y <- runif(n, min = 0, max = 1)

7
8 # Plot the scatterplot of X vs Y

9
10

9 / 110

Uniformly Random Scatter Plot

1 # Number of times to repeat generating the two numbers

2 n <- 1000

3
4 # Generate n uniform random numbers for X and Y

5 X <- runif(n, min = 0, max = 1)

6 Y <- runif(n, min = 0, max = 1)

7
8 # Plot the scatterplot of X vs Y

9 plot(X, Y, main = "Scatterplot of Independent Uniform Random Numbers",

10 xlab = "X Values", ylab = "Y Values", col = "blue", pch = 19)

10 / 110

Estimating Pi

1 # Number of points to generate

2
3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5
6
7
8 # Count how many points fall inside the unit circle

9
10
11 # Estimate Pi

12
13
14 # Print the estimate

15

11 / 110

Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5
6
7
8 # Count how many points fall inside the unit circle

9
10
11 # Estimate Pi

12
13
14 # Print the estimate

15

12 / 110

Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5 X <- runif(n, min = -1, max = 1)

6 Y <- runif(n, min = -1, max = 1)

7
8 # Count how many points fall inside the unit circle

9
10
11 # Estimate Pi

12
13
14 # Print the estimate

15

13 / 110

Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5 X <- runif(n, min = -1, max = 1)

6 Y <- runif(n, min = -1, max = 1)

7
8 # Count how many points fall inside the unit circle

9 points_inside <- sum(X^2 + Y^2 < 1)

10
11 # Estimate Pi

12
13
14 # Print the estimate

15

14 / 110

Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5 X <- runif(n, min = -1, max = 1)

6 Y <- runif(n, min = -1, max = 1)

7
8 # Count how many points fall inside the unit circle

9 points_inside <- sum(X^2 + Y^2 < 1)

10
11 # Estimate Pi

12 pi_estimate <- (points_inside / n) * 4

13
14 # Print the estimate

15

15 / 110

Estimating Pi

1 # Number of points to generate

2 n <- 10000

3
4 # Generate n uniform random numbers for X and Y in the range [-1, 1]

5 X <- runif(n, min = -1, max = 1)

6 Y <- runif(n, min = -1, max = 1)

7
8 # Count how many points fall inside the unit circle

9 points_inside <- sum(X^2 + Y^2 < 1)

10
11 # Estimate Pi

12 pi_estimate <- (points_inside / n) * 4

13
14 # Print the estimate

15 print(pi_estimate)

16 / 110

Flipping A Fair Coin

1 # Generate a uniform random number U between 0 and 1

2
3
4 # Determine the value of Z based on U

5
6
7 # Print the result

8

17 / 110

Flipping A Fair Coin

1 # Generate a uniform random number U between 0 and 1

2 U <- runif(1, min = 0, max = 1)

3
4 # Determine the value of Z based on U

5
6
7 # Print the result

8

18 / 110

Flipping A Fair Coin

1 # Generate a uniform random number U between 0 and 1

2 U <- runif(1, min = 0, max = 1)

3
4 # Determine the value of Z based on U

5 Z <- ifelse(U < 0.5, 0, 1)

6
7 # Print the result

8

19 / 110

Flipping A Fair Coin

1 # Generate a uniform random number U between 0 and 1

2 U <- runif(1, min = 0, max = 1)

3
4 # Determine the value of Z based on U

5 Z <- ifelse(U < 0.5, 0, 1)

6
7 # Print the result

8 print(Z)

20 / 110

Flipping Many Coins

1 # Number of coin flips

2
3
4 # Generate n uniform random numbers U between 0 and 1

5
6
7 # Determine the value of Z for each U

8
9

10 # Print the results

11

21 / 110

Flipping Many Coins

1 # Number of coin flips

2 n <- 10

3
4 # Generate n uniform random numbers U between 0 and 1

5
6
7 # Determine the value of Z for each U

8
9

10 # Print the results

11

22 / 110

Flipping Many Coins

1 # Number of coin flips

2 n <- 10

3
4 # Generate n uniform random numbers U between 0 and 1

5 U <- runif(n, min = 0, max = 1)

6
7 # Determine the value of Z for each U

8
9

10 # Print the results

11

23 / 110

Flipping Many Coins

1 # Number of coin flips

2 n <- 10

3
4 # Generate n uniform random numbers U between 0 and 1

5 U <- runif(n, min = 0, max = 1)

6
7 # Determine the value of Z for each U

8 Z <- ifelse(U < 0.5, 0, 1)

9
10 # Print the results

11

24 / 110

Flipping Many Coins

1 # Number of coin flips

2 n <- 10

3
4 # Generate n uniform random numbers U between 0 and 1

5 U <- runif(n, min = 0, max = 1)

6
7 # Determine the value of Z for each U

8 Z <- ifelse(U < 0.5, 0, 1)

9
10 # Print the results

11 print(Z)

25 / 110

Averaging Coin Flips

1 # Number of coins to flip in each experiment

2
3
4 # Number of experiments

5
6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail)↪→
8
9

10 # Sum the number of heads (1s) in each experiment to get X

11
12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

26 / 110

Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5
6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail)↪→
8
9

10 # Sum the number of heads (1s) in each experiment to get X

11
12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

27 / 110

Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail)↪→
8
9

10 # Sum the number of heads (1s) in each experiment to get X

11
12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

28 / 110

Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail)↪→
8 coin_flips <- matrix(runif(n * m, min = 0, max = 1) < 0.5, nrow = m, ncol = n)

9
10 # Sum the number of heads (1s) in each experiment to get X

11
12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

29 / 110

Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail)↪→
8 coin_flips <- matrix(runif(n * m, min = 0, max = 1) < 0.5, nrow = m, ncol = n)

9
10 # Sum the number of heads (1s) in each experiment to get X

11 X <- rowSums(coin_flips)

12
13 # Plot the histogram of X

14
15
16
17 # Plot the histogram of X/n

18
19

30 / 110

Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail)↪→
8 coin_flips <- matrix(runif(n * m, min = 0, max = 1) < 0.5, nrow = m, ncol = n)

9
10 # Sum the number of heads (1s) in each experiment to get X

11 X <- rowSums(coin_flips)

12
13 # Plot the histogram of X

14 hist(X, main = "Histogram of Number of Heads (X)", xlab = "Number of Heads",

15 ylab = "Frequency", col = "lightblue", border = "blue")

16
17 # Plot the histogram of X/n

18
19

31 / 110

Averaging Coin Flips

1 # Number of coins to flip in each experiment

2 n <- 10

3
4 # Number of experiments

5 m <- 1000

6
7 # Generate m experiments of n coin flips, where each flip is represented by a uniform

random number < 0.5 (head) or >= 0.5 (tail)↪→
8 coin_flips <- matrix(runif(n * m, min = 0, max = 1) < 0.5, nrow = m, ncol = n)

9
10 # Sum the number of heads (1s) in each experiment to get X

11 X <- rowSums(coin_flips)

12
13 # Plot the histogram of X

14 hist(X, main = "Histogram of Number of Heads (X)", xlab = "Number of Heads",

15 ylab = "Frequency", col = "lightblue", border = "blue")

16
17 # Plot the histogram of X/n

18 hist(X/n, main = "Histogram of Proportion of Heads (X/n)", xlab = "Proportion of Heads",

19 ylab = "Frequency", col = "lightgreen", border = "darkgreen")

32 / 110

A Random Walk

1 # Total number of steps

2
3
4 # Generate uniform random numbers

5
6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8
9

10 # Initialize X

11
12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

33 / 110

A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5
6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8
9

10 # Initialize X

11
12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

34 / 110

A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8
9

10 # Initialize X

11
12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

35 / 110

A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11
12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

36 / 110

A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11 X <- rep(0, t + 1)

12
13 # Compute X_t for each step

14
15
16
17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

37 / 110

A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11 X <- rep(0, t + 1)

12
13 # Compute X_t for each step

14 for (i in 1:t) {

15 X[i + 1] <- X[i] + Z[i]

16 }

17
18 # Plot the trajectory of the random walk

19
20
21
22 # Plot a histogram of the final positions

23
24

38 / 110

A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11 X <- rep(0, t + 1)

12
13 # Compute X_t for each step

14 for (i in 1:t) {

15 X[i + 1] <- X[i] + Z[i]

16 }

17
18 # Plot the trajectory of the random walk

19 plot(0:t, X, type = "l", main = "Trajectory of the Random Walk", xlab = "Time t",

20 ylab = "Position X", col = "blue")

21
22 # Plot a histogram of the final positions

23
24

39 / 110

A Random Walk

1 # Total number of steps

2 t <- 100

3
4 # Generate uniform random numbers

5 U <- runif(t, min = 0, max = 1)

6
7 # Generate Z: -1 if U < 0.5, 1 otherwise

8 Z <- ifelse(U < 0.5, -1, 1)

9
10 # Initialize X

11 X <- rep(0, t + 1)

12
13 # Compute X_t for each step

14 for (i in 1:t) {

15 X[i + 1] <- X[i] + Z[i]

16 }

17
18 # Plot the trajectory of the random walk

19 plot(0:t, X, type = "l", main = "Trajectory of the Random Walk", xlab = "Time t",

20 ylab = "Position X", col = "blue")

21
22 # Plot a histogram of the final positions

23 hist(X, main = "Histogram of Positions at Final Time Step", xlab = "Position X",

24 ylab = "Frequency", col = "lightgreen", border = "darkgreen")

40 / 110

Transformation Of Random Variable

1 # Number of random variables to generate

2
3
4 # Generate uniform random variables U

5
6
7 # Transform U to get exponential random variables X

8
9

10 # Plot histogram of X to visualize the exponential distribution

11
12

41 / 110

Transformation Of Random Variable

1 # Number of random variables to generate

2 n <- 1000

3
4 # Generate uniform random variables U

5
6
7 # Transform U to get exponential random variables X

8
9

10 # Plot histogram of X to visualize the exponential distribution

11
12

42 / 110

Transformation Of Random Variable

1 # Number of random variables to generate

2 n <- 1000

3
4 # Generate uniform random variables U

5 U <- runif(n, min = 0, max = 1)

6
7 # Transform U to get exponential random variables X

8
9

10 # Plot histogram of X to visualize the exponential distribution

11
12

43 / 110

Transformation Of Random Variable

1 # Number of random variables to generate

2 n <- 1000

3
4 # Generate uniform random variables U

5 U <- runif(n, min = 0, max = 1)

6
7 # Transform U to get exponential random variables X

8 X <- -log(U)

9
10 # Plot histogram of X to visualize the exponential distribution

11
12

44 / 110

Transformation Of Random Variable

1 # Number of random variables to generate

2 n <- 1000

3
4 # Generate uniform random variables U

5 U <- runif(n, min = 0, max = 1)

6
7 # Transform U to get exponential random variables X

8 X <- -log(U)

9
10 # Plot histogram of X to visualize the exponential distribution

11 hist(X, main = "Histogram of Exponential Random Variables", xlab = "X",

12 ylab = "Frequency", col = "lightblue", border = "blue", breaks = 50)

45 / 110

Central Limit Theorem & Law of Large Numbers

1 # Number of trials

2 trials <- 10000

3
4 # Initialize vectors to store the results

5 mean_u <- numeric(trials)

6 clt_u <- numeric(trials)

7
8 # Number of observations (change this to see different effects)

9 n <- 30

10
11 # Simulation

12 for (i in 1:trials) {

13 # Generate n uniform random numbers

14 U <- runif(n, min = 0, max = 1)

15
16 # Calculate the mean

17 mean_u[i] <- mean(U)

18
19 # Calculate for CLT

20 clt_u[i] <- sqrt(n) * (mean_u[i] - 1/2)

21 }

22
23 # Plot the histogram of mean_u to demonstrate LLN

24 hist(mean_u, main = "LLN: Histogram of U-bar", xlab = "U-bar",

25 ylab = "Frequency", col = "lightblue", border = "blue", breaks = 30)

26
27 # Plot the histogram of clt_u to demonstrate CLT

28 hist(clt_u, main = "CLT: Histogram of sqrt(n) (U-bar - 1/2)",

29 xlab = "sqrt(n) (U-bar - 1/2)", ylab = "Frequency", col = "lightgreen",

30 border = "darkgreen", breaks = 30)

46 / 110

Appendix

Note:
The following Appendix is meant as a supplemental resource.

47 / 110

Warm Up

Problem 1:
I flip a coin 2 times. What’s the probability I get 50% H?

48 / 110

Warm Up

Problem 2:
I flip a coin 10 times. What’s the probability I get 50% H?

49 / 110

Warm Up

Problem 3:
I flip a coin 100 times. What’s the probability I get 50% H?

50 / 110

Warm Up

Problem 4:
▶ We simulate a random walk by flipping a fair coin.

▶ We start at X0 = 0 on a number line.

▶ If we flip H, we move +1 to the right. If we flip T, we move
−1 to the left.

▶ Suppose I take the cumulative sum of +1’s and −1’s and I
plot this graph for each time-step (i.e. each flip of the coin).
What would you expect the graph to look like?

51 / 110

Rainy or Sunny?

▶ If it rains today, then it rains tomorrow with probability α.

▶ If it is sunny today, then it rains tomorrow with probability β.

▶ If it is sunny today, (i.e. X0 = R) then what is the probability
it rains two days from now? (i.e. P(X2 = R) =?)

52 / 110

Rainy or Sunny?

Consider the following two possibilities:

Case 1:

▶ R → R → R

▶ R
α−→ R

α−→ R

▶ Prob = α2

Case 2:

▶ R −→ S → R

▶ R
1−α−−→ S

β−→ R

▶ Prob = (1− α)β

Thus P(X2 = R) = P({(R,R,R)} ∪ {(R, S ,R)})
= P((R,R,R)) + P((R,S ,R)) = α2 + (1− α)β

53 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

54 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

▶ Recall that we make express the transitions between R and S
as conditional probabilities.

▶ P(X1 = R|X0 = R) = α

▶ P(X1 = R|X0 = S) = β

▶ We discovered that: P(X2 = R|X0 = R) = α2 + (1− α)β

55 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

▶ Recall that we make express the transitions between R and S
as conditional probabilities.

▶ P(X1 = R|X0 = R) = α

▶ P(X1 = R|X0 = S) = β

▶ We discovered that: P(X2 = R|X0 = R) = α2 + (1− α)β

56 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

▶ Recall that we make express the transitions between R and S
as conditional probabilities.

▶ P(X1 = R|X0 = R) = α

▶ P(X1 = R|X0 = S) = β

▶ We discovered that: P(X2 = R|X0 = R) = α2 + (1− α)β

57 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

▶ Recall that we make express the transitions between R and S
as conditional probabilities.

▶ P(X1 = R|X0 = R) = α

▶ P(X1 = R|X0 = S) = β

▶ We discovered that: P(X2 = R|X0 = R) = α2 + (1− α)β

58 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

▶ Let’s think about the problem in reverse.

▶ P(X2 = R|X1 = R) = α and P(X1 = R) = α

▶ P(X2 = R|X1 = S) = β and P(X1 = S) = 1− α

▶ Now by the law of total probability:

59 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

▶ Let’s think about the problem in reverse.

▶ P(X2 = R|X1 = R) = α and P(X1 = R) = α

▶ P(X2 = R|X1 = S) = β and P(X1 = S) = 1− α

▶ Now by the law of total probability:

60 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

▶ Let’s think about the problem in reverse.

▶ P(X2 = R|X1 = R) = α and P(X1 = R) = α

▶ P(X2 = R|X1 = S) = β and P(X1 = S) = 1− α

▶ Now by the law of total probability:

61 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

▶ Let’s think about the problem in reverse.

▶ P(X2 = R|X1 = R) = α and P(X1 = R) = α

▶ P(X2 = R|X1 = S) = β and P(X1 = S) = 1− α

▶ Now by the law of total probability:

62 / 110

Rainy or Sunny?

R Sα

β

1− β
1− α

▶ Let’s think about the problem in reverse.

▶ P(X2 = R|X1 = R) = α and P(X1 = R) = α

▶ P(X2 = R|X1 = S) = β and P(X1 = S) = 1− α

▶ Now by the law of total probability:

P(X2 = R|X0 = R) = P(X2 = R|X1 = R)P(X1 = R) + P(X2 = R|X1 = S)P(X1 = S)

63 / 110

Raining in the Future?

Problem 5:
Give it rains today (X0 = R), we want to know the probability it
rains 7 days from now P(X7 = R). How many different 7 day
sequence are there, s.t. X0 = R?

64 / 110

Raining in the Future?

Problem 5:
Give it rains today (X0 = R), we want to know the probability it
rains 7 days from now P(X7 = R). How many different 7 day
sequence are there, s.t. X0 = R?

▶ There are 27 = 128 sequence that start with X0 = R.

▶ This is too many to keep track of.

▶ We will review a better approach to this problem.

65 / 110

Raining in the Future?

Problem 5:
Give it rains today (X0 = R), we want to know the probability it
rains 7 days from now P(X7 = R). How many different 7 day
sequence are there, s.t. X0 = R?

▶ There are 27 = 128 sequence that start with X0 = R.

▶ This is too many to keep track of.

▶ We will review a better approach to this problem.

66 / 110

Raining in the Future?

Problem 5:
Give it rains today (X0 = R), we want to know the probability it
rains 7 days from now P(X7 = R). How many different 7 day
sequence are there, s.t. X0 = R?

▶ There are 27 = 128 sequence that start with X0 = R.

▶ This is too many to keep track of.

▶ We will review a better approach to this problem.

67 / 110

Raining in the Future?

▶ Denote the initial probability vector:
v0 = [P(X0 = R),P(X0 = S)] = [1, 0]

▶ v1 = [P(X1 = R),P(X1 = S)] = [α, 1− α]

▶ v2 = [α2 + (1− α)β, 1− (α2 + (1− α)β)]

▶
...

▶ vn = [P(Xn = R),P(Xn = S)]

68 / 110

Raining in the Future?

▶ Denote the initial probability vector:
v0 = [P(X0 = R),P(X0 = S)] = [1, 0]

▶ v1 = [P(X1 = R),P(X1 = S)] = [α, 1− α]

▶ v2 = [α2 + (1− α)β, 1− (α2 + (1− α)β)]

▶
...

▶ vn = [P(Xn = R),P(Xn = S)]

69 / 110

Raining in the Future?

▶ Denote the initial probability vector:
v0 = [P(X0 = R),P(X0 = S)] = [1, 0]

▶ v1 = [P(X1 = R),P(X1 = S)] = [α, 1− α]

▶ v2 = [α2 + (1− α)β, 1− (α2 + (1− α)β)]

▶
...

▶ vn = [P(Xn = R),P(Xn = S)]

70 / 110

Raining in the Future?

▶ Denote the initial probability vector:
v0 = [P(X0 = R),P(X0 = S)] = [1, 0]

▶ v1 = [P(X1 = R),P(X1 = S)] = [α, 1− α]

▶ v2 = [α2 + (1− α)β, 1− (α2 + (1− α)β)]

▶
...

▶ vn = [P(Xn = R),P(Xn = S)]

71 / 110

Raining in the Future?

▶ Denote the initial probability vector:
v0 = [P(X0 = R),P(X0 = S)] = [1, 0]

▶ v1 = [P(X1 = R),P(X1 = S)] = [α, 1− α]

▶ v2 = [α2 + (1− α)β, 1− (α2 + (1− α)β)]

▶
...

▶ vn = [P(Xn = R),P(Xn = S)]

72 / 110

Raining in the Future?

The astute of you may recall that this update rule is due to the
law of total probability. We may express the updates more
generally as:

P(Xn+1 = R) = P(Xn+1 = R|Xn = R)P(Xn = R) + P(Xn+1 = R|Xn = S)P(Xn = S)

P(Xn+1 = S) = P(Xn+1 = S|Xn = R)P(Xn = R) + P(Xn+1 = S |Xn = S)P(Xn = S)

73 / 110

Raining in the Future?

The astute of you may recall that this update rule is due to the
law of total probability. We may express the updates more
generally as:

P(Xn+1 = R) = P(Xn+1 = R|Xn = R)P(Xn = R) + P(Xn+1 = R|Xn = S)P(Xn = S)

P(Xn+1 = S) = P(Xn+1 = S|Xn = R)P(Xn = R) + P(Xn+1 = S |Xn = S)P(Xn = S)

Note:
The probabilities on day n + 1 are a linear combination of the
probabilities on day n. What’s so special about this?

74 / 110

Raining in the Future?

Since the next day probabilities are linear combinations of the
previous day probabilities, we may represent the update rule via
matrix multiplication:

[P(Xn+1 = R),P(Xn+1 = S)] =

[P(Xn = R),P(Xn = S)]

[
P(Xn+1 = R|Xn = R) P(Xn+1 = S |Xn = R)
P(Xn+1 = R|Xn = S) P(Xn+1 = S |Xn = S)

]

75 / 110

Raining in the Future?

Since the next day probabilities are linear combinations of the
previous day probabilities, we may represent the update rule via
matrix multiplication:

[P(Xn+1 = R),P(Xn+1 = S)] =

[P(Xn = R),P(Xn = S)]

[
P(Xn+1 = R|Xn = R) P(Xn+1 = S |Xn = R)
P(Xn+1 = R|Xn = S) P(Xn+1 = S |Xn = S)

]

vn+1 = vn

[
α 1− α
β 1− β

]

76 / 110

Raining in the Future?

Since the next day probabilities are linear combinations of the
previous day probabilities, we may represent the update rule via
matrix multiplication:

[P(Xn+1 = R),P(Xn+1 = S)] =

[P(Xn = R),P(Xn = S)]

[
P(Xn+1 = R|Xn = R) P(Xn+1 = S |Xn = R)
P(Xn+1 = R|Xn = S) P(Xn+1 = S |Xn = S)

]

vn+1 = vn

[
α 1− α
β 1− β

]

vn+1 = vnK

77 / 110

Raining in the Future?

What Now?
How does knowing the matrix update rule for the probabilities help
us determine P(X7 = R)?

▶ vn+1 = vnK

▶ v7 = v6K

▶ v7 = (v5K)K = v5K
2

▶
...

▶ v7 = v0K
7 = [1, 0]K 7

78 / 110

Raining in the Future?

What Now?
How does knowing the matrix update rule for the probabilities help
us determine P(X7 = R)?

▶ vn+1 = vnK

▶ v7 = v6K

▶ v7 = (v5K)K = v5K
2

▶
...

▶ v7 = v0K
7 = [1, 0]K 7

79 / 110

Raining in the Future?

What Now?
How does knowing the matrix update rule for the probabilities help
us determine P(X7 = R)?

▶ vn+1 = vnK

▶ v7 = v6K

▶ v7 = (v5K)K = v5K
2

▶
...

▶ v7 = v0K
7 = [1, 0]K 7

80 / 110

Raining in the Future?

What Now?
How does knowing the matrix update rule for the probabilities help
us determine P(X7 = R)?

▶ vn+1 = vnK

▶ v7 = v6K

▶ v7 = (v5K)K = v5K
2

▶
...

▶ v7 = v0K
7 = [1, 0]K 7

81 / 110

Raining in the Future?

What Now?
How does knowing the matrix update rule for the probabilities help
us determine P(X7 = R)?

▶ vn+1 = vnK

▶ v7 = v6K

▶ v7 = (v5K)K = v5K
2

▶
...

▶ v7 = v0K
7 = [1, 0]K 7

82 / 110

Simulating Rain Prediction

Let’s say α = 2/3, β = 1/2.

1 import numpy as np

2 import matplotlib.pyplot as plt

3
4 # Parameters that effect chances of rain/sun

5 alpha = 2/3

6 beta = 1/2

7 v0 = np.array([1., 0.])

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

83 / 110

Simulating Rain Prediction

Let’s say α = 2/3, β = 1/2.

1 import numpy as np

2 import matplotlib.pyplot as plt

3
4 # Parameters that effect chances of rain/sun

5 alpha = 2/3

6 beta = 1/2

7 v0 = np.array([1., 0.])

8
9 # The transition matrix

10 K = np.array([[alpha, 1 - alpha],

11 [beta, 1 - beta]])

12
13
14
15
16
17
18
19
20
21
22
23

84 / 110

Simulating Rain Prediction

Let’s say α = 2/3, β = 1/2.

1 import numpy as np

2 import matplotlib.pyplot as plt

3
4 # Parameters that effect chances of rain/sun

5 alpha = 2/3

6 beta = 1/2

7 v0 = np.array([1., 0.])

8
9 # The transition matrix

10 K = np.array([[alpha, 1 - alpha],

11 [beta, 1 - beta]])

12
13 # Loop for the first 8 days

14 v_list = []

15 for n in range(0,8):

16 print("----")

17 print("Day: ", n)

18 v = v0 @ np.linalg.matrix_power(K, n)

19 print("probabilities: ", v)

20 v_list.append(v)

21
22 plt.plot(v_list)

23 plt.show()

85 / 110

Recall!

▶ We went over simulating a random walk and simulating
simple weather model via a Markov Chain.

▶ In this lecture, we focus on more simulation and we involve
more code.

▶ Before we do this, let’s warm up.

86 / 110

Warm Up

Problem 1:
What is a Monte Carlo simulation?

87 / 110

Warm Up

Problem 2:
What is a Markov Chain?

88 / 110

Warm Up

Problem 3:
Let’s compute 28. About how many multiplications is required for
this computation?

89 / 110

Warm Up

Problem 3:
Let’s compute 2100. About how many multiplications is required
for this computation?

Answer:
Naively you would think that 28 requires 8 multiplications. But you
can actually perform it in far less:
2× 2 = 4, 4× 4 = 16, 16× 16 = 256 = 28. Only 3 multiplications.

90 / 110

Warm Up

Problem 4:
You flip a fair coin until a H comes up. About how many flips
would you expect to make?

91 / 110

Warm Up

Problem 4:
You flip a fair coin until a H comes up. About how many flips
would you expect to make?

Answer:
This is a geometric distribution. So E [H] = 1

1
2

= 2. Also it’s

intuitive that you would expect to see a H among 2 coin flips.

92 / 110

Warm Up

Problem 6:
You flip a fair coin until you see two H in a row. About how many
flips would you expect to make?

93 / 110

Warm Up

Problem 7:
You flip a fair coin until you see a H followed by a T , i.e. the
sequence HT . About how many flips would you expect to make?
Is it a different number than the expected amount of flips for HH?

94 / 110

Warm Up

Case HH:
Suppose we just received a H. Now if we flip a coin and fail to get
H (i.e. T), then at best we are 2 flips away from obtaining HH.

T H H1/2

1/2

1/2 1/2

Case HT:
Suppose we just received a H. Now if we flip a coin and fail to get
T (i.e. H), then at best we are 1 flips away from obtaining HT .

H T1/2
1/2

95 / 110

The Need To Simulate

As we saw with the some of the previous problems, seemingly
simple problems that we feel certain about might be somewhat
more complex than we would hope for.

To combat our easily tricked intuitions, it usually helps to run
simulations in order to witness the qualitative and numerical
behavior of a system.

96 / 110

Estimating Pi

Take a unit circle inscribed in a square. Uniformly sample a point
in the square and take the number of points that land in the circle
and divide it by the number of point that land outside the circle
(and scale appropriately).

97 / 110

Estimating Pi

Take a unit circle inscribed in a square. Uniformly sample a point
in the square and take the number of points that land in the circle
and divide it by the number of point that land outside the circle
(and scale appropriately).

1 import numpy as np

2
3
4
5
6
7
8
9

10

98 / 110

Estimating Pi

Take a unit circle inscribed in a square. Uniformly sample a point
in the square and take the number of points that land in the circle
and divide it by the number of point that land outside the circle
(and scale appropriately).

1 import numpy as np

2 def est_pi(num_sims):

3 count_in = 0

4
5
6
7
8
9

10

99 / 110

Estimating Pi

Take a unit circle inscribed in a square. Uniformly sample a point
in the square and take the number of points that land in the circle
and divide it by the number of point that land outside the circle
(and scale appropriately).

1 import numpy as np

2 def est_pi(num_sims):

3 count_in = 0

4 for _ in range(num_sims):

5 x, y = np.random.uniform(-1.0, 1.0, size=2)

6
7
8
9

10

100 / 110

Estimating Pi

Take a unit circle inscribed in a square. Uniformly sample a point
in the square and take the number of points that land in the circle
and divide it by the number of point that land outside the circle
(and scale appropriately).

1 import numpy as np

2 def est_pi(num_sims):

3 count_in = 0

4 for _ in range(num_sims):

5 x, y = np.random.uniform(-1.0, 1.0, size=2)

6 if x**2 + y**2 < 1:

7 count_in += 1

8
9

10 est_pi(10000)

101 / 110

Estimating Pi

Take a unit circle inscribed in a square. Uniformly sample a point
in the square and take the number of points that land in the circle
and divide it by the number of point that land outside the circle
(and scale appropriately).

1 import numpy as np

2 def est_pi(num_sims):

3 count_in = 0

4 for _ in range(num_sims):

5 x, y = np.random.uniform(-1.0, 1.0, size=2)

6 if x**2 + y**2 < 1:

7 count_in += 1

8 return 4 * (count_in / num_sims)

9
10 est_pi(10000)

102 / 110

Number of Flips Until HH

Run a bunch of simulations and keep note of the number of flips
until we see HH in each run. Sum all of these totals and divide by
the number of simulations you ran.

1 import numpy as np

2 def simulate_HH(num_sims):

3 number_of_flips_per_trial = []

4
5
6
7
8
9

10
11
12
13
14
15
16
17

103 / 110

Number of Flips Until HH

Run a bunch of simulations and keep note of the number of flips
until we see HH in each run. Sum all of these totals and divide by
the number of simulations you ran.

1 import numpy as np

2 def simulate_HH(num_sims):

3 number_of_flips_per_trial = []

4 for _ in range(num_sims):

5 saw_HH = False

6 trial = []

7
8
9

10
11
12
13
14
15
16
17

104 / 110

Number of Flips Until HH

Run a bunch of simulations and keep note of the number of flips
until we see HH in each run. Sum all of these totals and divide by
the number of simulations you ran.

1 import numpy as np

2 def simulate_HH(num_sims):

3 number_of_flips_per_trial = []

4 for _ in range(num_sims):

5 saw_HH = False

6 trial = []

7 while not saw_HH:

8 # Lets say H = 1, T = 0

9 flip = np.random.binomial(n=1, p=1/2)

10
11
12
13
14
15
16
17

105 / 110

Number of Flips Until HH

Run a bunch of simulations and keep note of the number of flips
until we see HH in each run. Sum all of these totals and divide by
the number of simulations you ran.

1 import numpy as np

2 def simulate_HH(num_sims):

3 number_of_flips_per_trial = []

4 for _ in range(num_sims):

5 saw_HH = False

6 trial = []

7 while not saw_HH:

8 # Lets say H = 1, T = 0

9 flip = np.random.binomial(n=1, p=1/2)

10 if len(trial) >= 1 and trial[-1] == 1 and flip == 1:

11 saw_HH = True

12
13
14
15
16
17

106 / 110

Number of Flips Until HH

Run a bunch of simulations and keep note of the number of flips
until we see HH in each run. Sum all of these totals and divide by
the number of simulations you ran.

1 import numpy as np

2 def simulate_HH(num_sims):

3 number_of_flips_per_trial = []

4 for _ in range(num_sims):

5 saw_HH = False

6 trial = []

7 while not saw_HH:

8 # Lets say H = 1, T = 0

9 flip = np.random.binomial(n=1, p=1/2)

10 if len(trial) >= 1 and trial[-1] == 1 and flip == 1:

11 saw_HH = True

12 trial.append(flip)

13
14 number_of_flips_per_trial.append(len(trial))

15 return sum(number_of_flips_per_trial) / num_sims

16
17 simulate_HH(50)

107 / 110

Number of Flips Until HT

Run a bunch of simulations and keep note of the number of flips
until we see HT in each run. Sum all of these totals and divide by
the number of simulations you ran.

108 / 110

Number of Flips Until HT

Run a bunch of simulations and keep note of the number of flips
until we see HT in each run. Sum all of these totals and divide by
the number of simulations you ran.

1 import numpy as np

2 def simulate_HT(num_sims):

3 number_of_flips_per_trial = []

4 for _ in range(num_sims):

5 saw_HT = False

6 trial = []

7 while not saw_HT:

8 # Lets say H = 1, T = 0

9 flip = np.random.binomial(n=1, p=1/2)

10 if len(trial) >= 1 and trial[-1] == 1 and flip == 0:

11 saw_HT = True

12 trial.append(flip)

13
14 number_of_flips_per_trial.append(len(trial))

15 return sum(number_of_flips_per_trial) / num_sims

16
17 simulate_HT(1000)

109 / 110

Thank You / Questions

Contact:
Prof. Ying Nian Wu may not be immediately available. You may
contact at: andrewlizarraga@g.ucla.edu for the duration of this
week.

Note:
The lecture material for this week should be available on
https://bruinlearn.ucla.edu/.

If you can’t find them there. You can get them from my site:
https://drewrl3v.github.io/teaching/spr24_stats100a/

110 / 110

https://bruinlearn.ucla.edu/
https://drewrl3v.github.io/teaching/spr24_stats100a/

