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Let x0 ∼ q(x0), and let x1 ∼ N(0, I), independently. Let (xt, t ∈ [0, 1]) be a trajectory that connects
x0 and x1. You can imagine a particle moves from x1 to x0 over time t in [0, 1]. If we repeat 1
billion times, you can imagine we have 1 billion particles that trace out 1 billion trajectories. We
call each such original trajectory as a path.

At each time t, we have a snapshot of 1 billion particles that form a marginal distribution qt.
Define

Q(x0, xdt, x2dt, ..., xt−dt, xt, ..., x1)

to be the distribution of the 1 billion trajectories. Now we learn P =
∏

t p(xt−dt|xt), which is a
Markov process going from x1 to x0.

We treat the 1 billion trajectories Q as the data, and we learn P by MLE, which amounts to
minimizing DKL(Q|P ), which is still the same as the original 2015 paper, except that we can make
Q, i.e., the trajectories, arbitrary.

In the 2015 paper, they re-write Q = q(x0)q(xT |x0)
∏

t q(xt−1|xt, x0), where q(xt−1|xt, x0) is
Gaussian. The DKL(q(xt−1|xt, x0)|p(xt−1|xt)) expression only means that we can write the least
squares loss from the above MLE on the trajectory data (augmented data) Q as minimizing

Eq(xt−1|xt, x0)[|xt−1 − fθ(xt, t)|2]

which is equivalent to minimizing

|E(xt−1|xt, x0)− fθ(xt, t)|2

where f is Unet or transformer.
You can imagine 100 trajectories going from the same x0 to the same xt. They go through 100

different xt−1. We use fθ(xt, t) to predict these 100 different xt−1 by least squares, then it is the
same as we use fθ(xt, t) to predict the average of these 100 xt−1. The average is in closed form. So
we use the average of xt−1 as the output data ,which leads to more accurate training by variance
reduction.
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The above q(xt−1|xt, x0) are derived from the Markovian Q =
∏

t q(xt|xt−1), but we can design
arbitrary q(xt−1|xt, x0). The trajectory Q does not need to be Markovian. The trajectories can
be any arbitrary continuous trajectories from sampled x0 to sampled x1 to serve as
data.
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For non-Markovian trajectories, the Markovian model P cannot model the data Q exactly, i.e.,
DKL(Q|P ) cannot be zero, so that we do not have ELBO. But this is not a very big issue as there
can be other ways to approach the log-likelihood.

The point is that as long as DKL(q(xt−dt|xt)|p(xt−dt|xt)) = 0, then we are good, i.e., our
Markovian model only needs to model the local transition (xt → xt−dt) in the trajectories, then
marginally we have pt = qt. We can prove this by induction. If pt = qt, then pt−dt = qt−dt because
pt−dt(xt−dt) =

∫
pt(xt)p(xt−dt|xt)dxt =

∫
qt(xt)q(xt−dt|xt)dt = qt−dt(xt−dt).

Imagine you follow the paths in the following way: at time t, suppose you are at xt = x.
Suppose there are 100 paths going through x at time t. You can randomly pick a path to go to
xt−dt. That means for the 1 billion particles, at any moment t, if multiple particles meet at x, then
they switch identities by a random permutation. This will not change the 1 billion paths, and will
not change the distribution of the particles of the snapshot at time t. Of course the whole trajectory
of a particle will not be one of the original trajectories, because the particle keeps changing paths
tracked by the original trajectories. In other words, the particles become memoryless, they do not
remember where they come from, or they do not remember their identities.
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In the original diffusion paper, the trajectory is zig-zag and non-differentiable, because xt = xt−dt+√
dtet, where et ∼ N(0, I), i.e., the velocity = (xt − xt−dt)/dt → ∞.
For flow, the trajectory is smooth and differentiable, i.e., xt = atx0 + btx1, so that velocity

v(xt, t) = a′tx0 + b′tx1, where a′t and b′t are time derivatives, i.e.,

xt−dt = xt + v(xt, t)dt.

Again at each time t and xt = x, there are 100 particles meeting at x, so we have 100 velocities
v(x, t). Then we can assume our model p(xt−dt|xt) to be xt−dt ∼ N(x+ u(x, t)dt, σ2), where u(x, t)
is the drift, and σ2 is the variance (the normal assumption can be changed to a more accurate
distribution, but it does not matter as we will see next).

Then clearly the MLE of u(x, t)dt is the average of the 100 v(x, t)dt, and σ2 is the variance of
the 100 v(x, t)dt, i.e.,

u(x, t) = E(v(x, t)|x0, x1, so that trajectory from x1 to x0 passes x at time t).

But
σ2 = var(v(x, t)| . . . )dt2 = vartdt

2,

where vart is the variance of the 100 v(x, t). Thus p(xt−dt|xt) is

xt−dt = xt + u(x, t)dt+ e(x, t)dt,

where e(x, t) = v(x, t)− u(x, t), and v(x, t) is random (one of 100), and E(e(x, t)) = 0.
The above path is not diffusion anymore, because we have e(x, t)dt, instead of e(x, t)

√
dt. Even

though E(e(x, t)) = 0, we have var(e(x, t)) = vartdt
2. That is, e(x, t)dt is a random drift. Each

path is still differentiable.
Okay, now consider we move according to the above model for N steps, so that Dt = Ndt, e.g.,

dt is 1 milli-second, and Dt is 1 second, so that N = 1000. Then we have

xt−Dt = xt +
∑

u(x, t)dt+
∑

e(x, t)dt,
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and ∑
e(x, t)dt =

∑
e(x, t)Dt/N → 0,

because
∑

e(x, t)/N → 0 according to the law of large number, where e(x, t) are independent due
to the Markovian property, i.e., at each time t, we randomly pick a path that passes through x.
Equivalently

var(
∑

e(x, t)dt) =
∑

vartdt
2 = (

∑
vartdt)dt → 0

.
So if we look at the trajectories at the scale Dt, they are deterministic xt−Dt = xt + u(x, t)Dt.

In our infinitesimal analysis, we can let Dt → 0 and for each Dt, we let N → ∞.
The above argument generally applies to ODE/SDE, where the random drift can be re-

placed by the deterministic average drift. For instance, in Langevin dynamics, the conditional
score can be replaced by the marginal score.

Now back to the path xt = atx0 + btx1, recall x0 and x1 are high-dimensional vectors. So xt
is generally a curve that connects x0 and x1. We can make it straight line as Qiang Liu did. For
learning, we can minimize

E[|v(x, t)− uθ(x, t)|2|x0, x1, trajectory passes x at t].

This is actually the v-prediction of Jonathan Ho, except they use spherical interpolation, so that
xt is a circle. The v-prediction can be translated to the epsilon-prediction, which is about score.
So flow matching still follows DKL(Q|P ) of the original paper, i.e., MLE on the augmented data
or trajectory data Q. We only need to make the trajectory in data Q straight.
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